

Multi-GPU FFT Performance on Different Hardware Configurations

Kevin RoeMaui High Performance
Computing Center

Ken Hester Nvidia Raphael Pascual
Pacific Defense Solutions

Advance Modeling & Simulation (AMS) Seminar Series NASA Ames Research Center, March 19, 2019

Distribution A: This is approved for public release; distribution is unlimited

Fast Fourier Transform (FFT)

- The Fourier transform
 - Decomposes a function of time into the frequencies that make it up
 - Discretize then compute using FFTs
- Motivating FFT based applications
 - Digital Signal Processing (DSP)
 - Medical Imaging
 - Image Recovery
 - Computational Fluid Dynamics
 - Can require large datasets

- Benchmarking multi-GPU FFTs within a single node
 - CUDA functions
- Collective communications
- Bandwidth and latency will be strong factors in determining performance

Medical Imaging

Ultrasonic Imaging

- Creates an image by firing & receiving ultrasonic pulses into an object
- Preferred technique for real-time imaging and quantification of blood flow
 - Provides excellent temporal and spatial resolution
 - Relatively inexpensive, safe, and applied at patient's bedside
 - Low frame rate
- Traditional techniques do not use FFT for image formation
- Pulse plane-wave imaging (PPI)
 - Utilizes FFTs for image formation
 - Improved sensitivity and can achieve much higher frame rates

Computed Tomography (CT)

Removes interfering objects from view using Fourier reconstruction

Magnetic Resonance Imaging (MRI)

- Based on the principles of CT
- Creates images from proton density, Hydrogen (¹H)
- Image reconstruction by an iterative non-linear inverse technique (NLINV)
 - Relies heavily on FFTs
- Real-time MRIs require fast image reconstruction and hence powerful computational resources

GTC 2019 Slide 3 of 28

Medical Imaging (continued)

Multi-Dimensional requirements

- 2D, 3D, and 4D imaging
- Traditional CT & MRI scans produce 2D images
- Static 3D Volume (brain, various organs, etc.)
 - Combining multiple 2D scans
- Moving objects incorporate time
 - 3D video image: multiple 2D images over time
 - 4D video volume: multiple 3D volumes over time

Supplementary techniques also require FFTs

- Filtering operations
- Image reconstruction
- Image analysis
 - Convolution
 - Deconvolution

Image Recovery

- Ground based telescopes require enhanced imaging techniques to compensate for atmospheric turbulence
 - Adaptive Optics (AO) can reduce the effect of incoming wavefront distortions by deforming a mirror in order to compensate in real time
 - AO cannot completely remove the effects of atmospheric turbulence
 - Multi-frame Blind Deconvolution (MFBD) is a family of "speckle imaging" techniques for removing atmospheric blur from an ensemble of images
 - Linear forward model: $d_m(x) = o(x) * p_m(x) + \sigma_m(x)$
 - Each of m observed data frames of the image data $(d_m(x))$ is represented as a pristine image (o(x)) convolved with a Point Spread Function $(p_m(x))$ as well as an additive noise term $(\sigma_m(x))$ that varies per image.
 - Ill-posed inverse problem solved with max likelihood techniques and is very computationally intense
 - Requires FFTs in its iterative process to calculate the object, producing a "crisper" image

Seasat

Image Recovery (continued)

ODERNIZATION PROGRAM

- Physically Constrained Image Deconvolution (PCID)
 - A highly effective MFBD has been parallelized to produce restorations quickly
 - A GPU version of the code is in development
- Fermi Gamma-ray Space Telescope: NASA satellite (2008)
 - Study astrophysical and cosmological phenomena
 - Galactic, pulsar, other high-energy sources, and dark matter

Computational Fluid Dynamics

- Direct Numerical Simulation (DNS)
 - Finite Difference, Finite Element, & Finite Volume methods
 - Pseudo Spectral method: effectively solving in spectral space using FFTs

Simulating high resolution turbulence

- Requires large computational resources
- Large % of time spent on forward and inverse Fourier transforms
- Effective performance can be small due to its extensive communication costs
- Performance would be improved with higher bandwidth and lower latency

Code examples that utilize FFTs on GPUs

- NASA's FUN3D
- Tarang
- UltraFluidX

GTC 2019 Slide 7 of 28

Benchmarking Multi-GPU FFTs

- Represent large 3D FFTs problems that cannot fit on a single GPU
 - Single precision Complex to Complex (C2C) in-place transformations
 - C2C considered more performant than the Real to Complex (R2C) transform
 - In-place reduces memory footprint and requires less bandwidth
- Distributing large FFTs across multiple GPU
 - Communication is required when spreading and returning data
 - Significant amount collective communications
 - Bandwidth and latency will be strong factors in determining performance
- Primary CUDA functions (used v9.1 for consistency across platforms)
 - cufftXtSetGPUs identifies the GPUs to be used with the plan
 - cufftMakePlanMany64 Create a plan that also considers the number of GPUs available. The "64" means argument sizes and strides to be 64 bit integers to allow for very large transforms
 - cufftXtExecDescriptorC2C executes C2C transforms for single precision

Hardware Configurations Examined

- IBM Power 8
 - Hokulea (MHPCC)
 - Ray (LLNL)
- IBM Power 9
 - Sierra (LLNL)
 - Summit (ORNL)
- x86 PCIe
- Nvidia DGX-1 (Volta)
- Nvidia DGX-2
- Nvidia DGX-2H

GTC 2019

Distribution A: This is approved for public release; distribution is unlimited

Slide 9 of 28

IBM POWER8 with P100 (Pascal) GPUs

- 2x P8 10 core processors
- 4x NVIDIA P100 GPUs
 - NVIDIA NVLink 1.0
 - 20 GB/s unidirectional
 - 40 GB/s bidirectional
 - 4 NVLink 1.0 lanes/GPU
 - 2 lanes between neighboring GPU
 - 2 lanes between neighboring CPU
- X-Bus between CPUs
 - 38.4 GB/s
- POWER All switch can be enabled
 - Increases P100 clock speed from 1328 GHz to 1480 GHz

IBM POWER9 with Volta GPUs

- 2x P9 22 core processors
- 4x or 6x NVIDIA V100 GPUs
 - NVIDIA NVLink 2.0
 - 25 GB/s unidirectional
 - 50 GB/s bidirectional
 - 6 NVLink 2.0 lanes/GPU

4x GPUs/node

- 3 lanes between neighboring GPU
- 3 lanes between neighboring CPU

6x GPUs/node

- 2 lanes between neighboring GPU
- 2 lanes between neighboring CPU

X-Bus between CPUs

64 GB/s

GTC 2019 Slide 11 of 28

DGX-1v with 8 V100 GPUs

- 2x Intel Xeon E5-2698 v4, 20-core
- 8x NVIDIA V100 GPUs
 - NVIDIA NVLink 2.0
 - 25 GB/s unidirectional
 - 50 GB/s bidirectional
- Hybrid cube mesh topology
 - Variable lanes/hops between GPUs
 - 2 lanes between 2 neighboring GPUs
 - 1 lane between 1 GPU neighbor
 - 1 lane per cross CPU GPU
 - 2 hops to other cross CPU GPUs
 - PCle Gen3 x16
 - 32 GB/s bidirectional
 - GPU & PCIe switch
 - PCIe switch & CPU

DGX-2 with 16 V-100s

- 2 Dual Intel Xeon Platinum 8168, 2.7 GHz, 24-cores
- 16x NVIDIA 32GB V100 GPUs
- NVSwitch/NVLink 2.0 interconnection
 - Capable of 2.4 TB/s of bandwidth between all GPUs
 - Full interconnectivity between all 16 GPUs

Distribution A: This is approved for public release; distribution is unlimited

GTC 2019 Slide 13 of 28

3D FFT (C2C) Performance Study

IBM Power Series

- IBM P8 (4x 16GB P100s) & IBM P9 (4x 16GB V100s)
- Multiple sized cases from 64x64x64 to 1280x1280x1280 (memory limited)
- 4 cases that shows how bandwidth & latency can affect performance:
 - 1 GPU only connect to CPU with NVLink
 - 2 GPUs attached to the same CPU and connected with NVLink
 - 2 GPUs attached to different CPUs
 - 4 GPUs (2 attached to each CPU)

x86 based systems

- Multiple sized cases from 64x64x64 to 2048x2048x2048 (memory limited)
- PCIe connected GPU (no NVLink) system (PCIe G3 16x 16GB/s bandwidth)
 - 1, 2, & 4 GPU cases
- DGX-1v
 - 1, 2, 4, & 8 GPU cases
- DGX-2
 - 1, 2, 4, 8, & 16 GPU cases

IBM P8 Performance Study

- Very similar performance between the 2 IBM P8s
 - Only noticeable difference is the CPU pass-through cases
 - Better performance for non-CPU pass-through cases
 - Power AI: negligible effect as the limiting factor was bandwidth and latency
- Same-socket 2x GPU case
 - Bandwidth/latency has not dramatically affected performance before the problem size has reached its memory limit
- All other GPU cases are more affected by bandwidth & latency

Distribution A: This is approved for public release; distribution is unlimited

Slide 15 of 28

IBM P9 Performance Study

- P9 with 4x 16GB V100s performed better than the P8
 - Similar trends in performance as P8 b/c of architecture
 - Better overall performance b/c of V100 and 6 NVLink 2.0 lanes
 - Additional bandwidth of NVLink 2.0 allowed for better scaling
- 2x & 4x GPU CPU pass-through cases
 - Bandwidth & latency limit performance gain
- Summit performance expectation w/ 6 GPUs/node
 - Less available lanes per GPU ≡ less bandwidth
 - Greater Memory (6x16GB) ≡ greater number of elements

Distribution A: This is approved for public release; distribution is unlimited

Slide 16 of 28

x86 PCIe Based Performance Study

- 4x V100 (32GB) GPUs connected via x16 G3 PCIe (no NVLink)
 - Communication saturates the PCIe bus resulting in performance loss
 - Also limited by the QPI/UPI communication bus
 - The 3D FFT does not scale

Distribution A: This is approved for public release; distribution is unlimited

GTC 2019 Slide 17 of 28

DGX-1v Performance Study

- 8x 32GB V100 GPUs
 - 4 GPUs/CPU socket
- Hybrid Mesh Cube topology
 - Mix of NVLink connectivity

Variety of comm. cases

- NVLink 2.0
- PCle on same socket
- PCIe with CPU pass-through

GTC 2019 Slide 18 of 28

DGX-2 Performance Study

- 16x 32GB V100 GPUs
 - NVSwitch/NVLink
- Variety of comm. cases
 - NVLink 2.0
 - PCle on same socket
 - PCle with CPU pass-through

Distribution A: This is approved for public release; distribution is unlimited

GTC 2019 Slide 19 of 28

DGX-1v, DGX-2, DGX-2H Comparison

Key takeaways

- Very similar performance up to 4 GPUs
- DGX-1v overhead for 8 GPU in the Hybrid Mesh Cube topology
- DGX-2H performs ~10-15% better than the DGX-2

GTC 2019 Slide 20 of 28

Collective Performance

GTC 2019 Slide 21 of 28

4x P100s (16GB) Performance

GTC 2019 Slide 22 of 28

2x V100 (32GB) Performance

GTC 2019 Slide 23 of 28

4x V100 Performance

GTC 2019 Slide 24 of 28

8x V100 (32GB) Performance

GTC 2019 Slide 25 of 28

16x V100 (32GB) Performance

GTC 2019 Slide 26 of 28

Conclusions

- Collective communication operations dominate performance when large FFTs are spread over multiple GPUs
 - Highly dependent on underlying architecture's <u>bandwidth and latency</u>

x86 PCle based systems

Lower bandwidth and higher latency restrict scaling of multi-GPU FFTs

IBM Power Series

Overhead associated when needed to handle communication between GPUs on different sockets limit performance

NVIDIA DGX-1v

Hybrid Mesh Cube topology lowers communication overhead between GPUs

NVIDIA DGX-2

NVSwitch technology has the lowest communication overhead between GPUs

NVIDIA DGX-2H

Low communication overhead combined with faster GPUs

Future Work

Future Work

- Examine Unified Memory FFT implementations
- Multi-node Multi-GPU FFT implementations
- Deeper analysis of the DGX-2H

Acknowledge support by

- The U.S. DoD High Performance Computing Modernization Program
- The U.S. DoE at Lawrence Livermore National Laboratory
- NVIDIA